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ABSTRACT 
 

 

  

Constructing a higher resolution image from several low 

resolution images is called Super Resolution. In Image Processing 

applications, as data size increases, data processing becomes tedious 

and time consuming. In order to reduce the effect of these factors, we 

convert the image, which is in spatial domain, into frequency domain. 

Fourier Transform is one very well-known method of representing 

data in frequency domain. Fourier representation has been a topic of 

intense research for over half a century now. To calculate the Fourier 

Transform of images of bigger data sizes, various state of the art 

methods are available. 2 D FFT algorithm is one such method, which 

is used in this project work. In realizing this algorithm, we intend to 

make use of Row-Transpose-Column method. Accessing Column 

data increases the delay which is overcome by the Transpose 

operation. Our method eases the complexity, as it will be a Row 

operation, followed by a Transpose and finally another Row 

operation. But this operation requires repeated data access from 

memory. Further work is underway in this aspect. 
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INTRODUCTION 
 

 

 

 

1. Now a days, providing fool proof security to various installations 

like airports, railway stations, banks, defence establishments and etc. is 

of utmost critical importance. Various security systems are available in 

market for ready use. These security systems keep monitoring the area 

of interest and allow access to people whose details are provided in 

their database. Data provided in these database, can be used to 

determine whether to provide or prevent access to area of importance. 

Face recognition is one such process, where we compare the facial 

features of a person and accordingly process his access request. 

 

 

2. For efficient and reliable working of a face recognition system, 

we need high resolution images of personnel. Super resolution is a 

process of constructing a high resolution image from a single or 

multiple low resolution images. In a face recognition system, the 

images captured by surveillance cameras are generally of low 

resolution. When these low resolution images are fed to a face 

recognition system, the performance of the system is poor. Hence, 

before forwarding the image to a face recognition system, the resolution 

of the image needs to be enhanced.  Several reconstruction techniques 

are already in use in the image processing field. These techniques 

improve the performance and reliability of a face recognition system. In 

this regard, converting image data (which is in spatial domain) into 

frequency domain becomes an unavoidable requirement in order to 

ensure easy and fast data processing. 

 

 

3. This frequency domain representation is achieved by using 

various techniques. Fourier analysis is one such technique. Fourier 

analysis in itself has been a topic of very intense research in the past 

half a century. Basic principle of Fourier analysis is representing any 

signal as a complex sum of Sine and Cosine terms. As image size 

increases, representing it in Fourier (frequency) domain becomes more 
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and more difficult. Therefore, parameters of main concern here are size 

of data and complexity in computation involved. Towards this, a brief 

overview of several prevalent algorithms/techniques related to Fourier 

representation is presented in this report. 

 

 

4. In Chapter 2, a brief overview of Fourier representation is 

presented followed by various popular and frequently used methods to 

calculate Discrete Fourier transform, in Chapter 3 and 4 respectively. In 

Chapter 5, some of the available computation algorithms are discussed. 

In Chapter 6, the status of implementation of the algorithm in 

MATLAB is presented followed by concluding remarks and the future 

work in Chapter 7. 
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OVERVIEW OF FOURIER 

REPRESENTATION 

 
 

2.1 FOURIER SERIES 

 
 

5. Jean Baptist Joseph Fourier, a French mathematician, had 

invented during early 19
th

 century that any function that repeats 

periodically, can be expressed as a sum of sine and/or cosine relations 

of various frequencies, each multiplied by a coefficient. No matter how 

complicated the function is; it can be represented by such a sum, if it is 

periodic & meets some mathematical condition. Such a sum is now 

called Fourier series. On the other hand, functions which are finite but 

not periodic in nature can also be represented as an integral of sine and 

cosine functions multiplied by a weighing function. We call this 

representation as Fourier Transform. 

 

 

6. Both Fourier series and Fourier transform representations have an 

important characteristic which enables them to reconstruct the input 

function with no loss of information. This allows us to work in the 

“Fourier domain” and then return to the original domain of the function 

without losing any information. As a result of intense research in 

Fourier analysis, enormous improvements in digital computation and 

discovery of various state of the art technologies and formulation of 

various algorithms/techniques to obtain Fourier representations, signal 

processing industry is attaining greater importance, every passing day. 

In this report, only those functions which have finite duration are 

discussed as the subject of discussion is an Image, which is a 2 

dimensional function in spatial domain. 
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2.2 1 D FOURIER TRANSFORM 
 
 

7. Fourier transform, commonly called as Discrete Fourier 

Transform (hence forth called DFT) of a discrete function x (n), n=0, 1, 

2 ...N-1, is given by equation (A). Similarly, to reconstruct the original 

function, we use Inverse Discrete Fourier Transform (hence forth called 

IDFT), given by equation (B). (A) and (B) together, are called Discrete 

Fourier Transform pair. A Discrete Transform Pair has an important 

property, that, unlike the continuous case, we need not be concerned 

about the existence of the DFT or IDFT. The Discrete Fourier 

transform and IDFT always exist. 
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                     k = 0, 1, 2...N-1.   ---(A) 

 

 

 

 

                       k = 0, 1, 2...N-1    ---(B) 

 

  

 

8. In order to compute the forward and reverse transforms, we start 

by substituting k=0 in the exponential term and then take the sum for all 

values of n. This is followed by k=1, 2, N-1. As is evident, it takes 

approximately N² multiplications and N (N-1) additions to represent the 

function in the other domain. For simplicity and better understanding, 

we confine our discussion in this report to finite quantities. These 

comments are directly applicable to both 1 and 2 dimensional functions. 
 

  

2.3 2 D FOURIER TRANSFORM 
 

9. A data is said to be 2 dimensional if it is arranged in a matrix, i.e. 

Row-Column format. An image is one good example of such data. 

Extension of the 1 dimensional Discrete Fourier transform and its 
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inverse to 2 dimensions is straightforward. The DFT and IDFT of a 

function (image) f(x,y) of size M*N is given by the equations (C) and 

(D).  
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                k1= 0,1,2,...M-1;  k2 = 0,1,2,...N-1.    

 

   

 

 

  

 

           ---(D) 

                x= 0, 1, 2...M-1; y = 0, 1, 2...N-1.    

 

 

 

10. In these equations, the variables k1, k2 are frequency variables 

while x and y are spatial variables. If f (x, y) is real, then its Fourier 

transform is conjugate symmetric. It is difficult to make any direct 

associations between specific components of an image and its 

transform. However, some general statements can be made about the 

relationship between the frequency components of the Fourier 

transform and spatial characteristics of an image. For instance, since 

frequency is directly related to rate of change, we can intuitively 

associate, very comfortably frequencies in the transform with patterns 

of intensity variations in the image. Usually, slowest varying frequency 

component corresponds to the average gray level of an image. As we 

move away from the origin of the transform the low frequencies 

correspond to the slowly varying components of the image. The higher 

frequencies correspond to faster gray level changes in the image. These 

are the edges of objects and other components of an image which have 

abrupt changes in gray level. 

 

 

11. An important property of 2D DFT is that, it is separable. It means, 

we can take first 1D DFT row-wise and then take another 1D DFT 
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column-wise within appropriate boundary conditions. For 

standardization, we will be considering square matrices, in other words, 

images with same number of rows and columns, both being integer 

powers of 2. Calculating DFT of a test data involves complex 

multiplications and additions. As the data size increases, the number of 

such complex multiplications and additions involved in calculating 

DFT of the test data increases very rapidly, running into several orders 

of magnitude. In order to overcome such a computation intensive 

situation, reduce the complexity and make such calculations faster, 

various techniques and algorithms are developed. We will discuss some 

of these techniques in the following Chapters. 
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DISCRETE FOURIER TRANSFORM 

 

 

3.1 METHODS TO COMPUTE DFT 

 
12. Calculating DFT of an N point sequence requires N² complex 

multiplications and additions. For smaller values of N, handling so 

many computations does not project any major difficulties. But as the 

data size (N) starts increasing, we face a very highly computation 

intensive task. Before we discuss how to overcome this 

computationally intensive difficulty, let us briefly discuss various 

methods of calculating DFT. 

 

 

3.1.1 BRUTE FORCE METHOD 

 

13. In this method, we use standard equations, (A) and (B) to 

calculate 1D DFT whereas (C) and (D) to calculate 2D DFT. By 

varying values of n, k successively for the first case and x, y, k1 & k2 

in the second case, we compute DFT. As told before, this requires N² 

complex multiplications and N(N-1) complex additions for all values of 

a 1D DFT, not to mention the number of indexing and addressing 

operations we need to do to fetch the data and to store the results. This 

is inefficient as it does not exploit the Symmetry and Periodicity 

properties of DFT given below. 

 

 

Symmetry Property:  ---(E)  

 

 

Periodicity Property: ---(F) 

 

)/(2/)2/(2 NkjNNkj ee   

)/(2/)(2 NkjNNkj ee   
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3.1.2 Matrix Multiplication Method 
 

14. In this method, we represent the input sequence as a column 

vector of N rows (for 1D data) or as an N*N matrix (2D data). Their 

respective DFTs are obtained by multiplying these matrices with an N 

order square matrix called Twiddle Factor matrix, as shown below.  

 

Y′ = F X ′   ---- (G) 
Where X is input matrix, Y is DFT matrix, 

 

 

        F = 
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



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For 2D data, we follow a procedure as mentioned below, 

 

NM FXFY **    ---- (H) 
 

where FM and FN are Twiddle factor matrices for M rows and N 

columns, X is input data while Y is the DFT matrix.  

 

 

3.2 FAST FOURIER TRANSFORMS 

 

15. In order to overcome the challenge of intense computation and 

speed, various new approaches have been invented. By adopting 

suitable methodology, we can make the entire process of calculating the 

DFT easier and simpler. Divide-and-Conquer approach is one such 

,/2 Nje  
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technique. The main essence of this approach is to divide the input 

signal into smaller sequences and successively calculate DFTs for those 

smaller sequences. In this regard, many techniques are prevalent out of 

which some important ones will be discussed in the next few 

paragraphs.  

 

 

3.2.1 RADIX 2 METHOD  
 

16. In this method, we consider N to be an integer power of 2 and 

divide the entire input sequence into even and odd numbered sub 

sequences. Now the N point DFT can be expressed in terms of DFTs of 

these subsequences which are periodic with period N/2. In the next step 

we divide these 2 subsequences further into 2 each subsequences (total 

of 4) and take their DFT. This approach is repeated till we reduce the N 

point input sequence into N 1 point sequences. At the end, the number 

complex multiplications required, will reduce from N² to N log₂ N. 

This method has an advantage of being very simple and hence easy to 

implement. However, when N takes higher values, implementation uses 

considerable amount of resources for computation, which in turn 

becomes slower.  

 

 

3.2.2 RADIX 4 METHOD  
 

17. When the number of data points N in the DFT is a power of 4, we 

can, of course, always use a radix-2 algorithm for the computation. 

However, for this case, it is more efficient computationally to employ a 

radix-4 FFT algorithm. In this method, we divide the input sequence 

into 4 N/4 length subsequences, after which we follow a modified 

procedure which loosely resembles Radix 2 method. With this method 

we are able to reduce complex multiplications by 25% but the additions 

increases by 50%. Further details about this method will be discussed 

later in Chapter 4. 
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3.2.3 SPLIT RADIX METHOD  
 

18. An inspection of the radix-2 method indicates that the even-

numbered points of the DFT can be computed independently of the 

odd-numbered points. This suggests the possibility of using different 

computational methods for independent parts of the algorithm with the 

objective of reducing the number of computations. The split-radix FFT 

(SRFFT) algorithms exploit this idea by using both Radix 2 and Radix 

4 decomposition in the same FFT algorithm. 

 

19. Thus the N-point DFT is decomposed into one N/2-point DFT 

without additional twiddle factors and two N/4-point DFTs with 

twiddle factors. The N-point DFT is obtained by successive use of these 

decompositions up to the last stage. Thus we obtain SRFFT algorithm.  

 

20.        There are a few more methods which use higher radices like 

Radix 8, powers of 2, 4, 8, 16 and etc. But implementing these methods 

becomes more and more complex as too many parameters are involved 

in their implementation as well as possessing non homogeneous 

structure. With this background, we restrict our discussion of various 

methods/algorithms of calculating DFT to this point, while focusing our 

attention to a method which we intend to use in our implementation. 
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AVAILABLE DFT ALGORITHMS 
 

 

4.1 AVAILABLE ALGORITHMS 
 

21. Most of the methods that we discussed briefly, in the previous 

chapter, have been implemented commercially, with considerable 

success. Huge amount of research and analysis efforts have been put in 

for implementing these methods into hardware. During the last couple 

of decades, these efforts have resulted in publishing of several literature 

works. While implementing a 2D FFT, we need to take various 

parameters like data size, speed of operation and resources available 

among others, into consideration. A delicate compromise will have to 

be made between size, memory resources and speed of operation. We, 

in the next section, carry out a qualitative study of some of the methods 

which are presented in these literatures. 

 

 

4.1.1 ROW COLUMN DECOMPOSITION
 [10] 

 

22. As we know that image data is stored in 2 dimensional matrices 

consisting of rows and columns, a simple method of processing this 

data is by using Row Column operations, as done in general matrices 

operations. In Row Column decomposition method, a 2D DFT on N*N 

data is computed by first performing N row-wise 1D DFTs and then N 

column-wise 1D DFTs. If these 1D DFTs are implemented using FFT, 

the computational complexity is N² log₂N. In implementations like this, 

input 2D data is initially stored in the external memory and DFT 

operations are carried out.  When we make use of SRAM for such data 

storage, for smaller data sizes, implementation performs very well, as 

row and column access times are same. For large data sizes, using 

SRAM becomes impractical due to limited size and high cost. Using 

SDRAM with larger capacity, as external memory for larger data sizes 

proves effective due to high throughput and high capacity. 
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23. We know that SDRAM is arranged in 3D structure consisting of 

rows and columns, which are again arranged in banks, it has non 

uniform access time; accessing consecutive elements in a row has lower 

latency than accessing data across different rows, which has high 

latency. As a result, row-wise DFTs are much faster than column-wise 

DFTs. Even as we use DDR2 or DDR3 standards for SDRAM, existing 

memory interfaces fail to utilize bandwidth of SDRAM device for 

column DFTs. This method gives poor performance even when we 

custom design the memory interface. Hence, data transfer between off-

chip and on-chip memories is the most critical bottleneck. 

 

 

4.1.2. ROW TRANSPOSE COLUMN DECOMPOSITION 
[11] 

 

24. This method resembles the previous method to a large extent. 

However, the difference between the two methods lies in the point that 

additional transpose operation is added here which makes this method 

to be better than the previous one. The problem of data transfer between 

memories is addressed by undertaking additional transpose operations. 

After taking row-wise 1D DFT, we save the result of first step as a 

transposed matrix.  

 

25. As next step, we take another row-wise 1D DFT on this 

transposed matrix, this time, actually taking DFT on the column data. 

Once DFT calculation is over, data is saved in the same order. To get 

the final result, we need to do another transpose operation, which puts 

the result into actual order in which the input data was initially 

accessed. Even though the performance is improved, requirement of 

transferring data to and from memory for repeated transpose operations 

makes it cumbersome and inefficient for large data sizes. Figure below 

shows the block diagram representation of this method and practically 

how this method is achieved. 
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Fig 1: Row-Transpose-Column method with Block Diagram. 

  

  

4.1.3. SPARSE MATRICES MULTIPLICATION METHOD 
[7]

 

 

26. Another way of computing 2D DFT is to use Sparse matrices 

multiplication method. The data is partitioned into a mesh of sub blocks 

in both rows and columns, each sub block having a predetermined 

number of rows and columns, perform butterfly operations between sub 

blocks which involve data exchange with individual elements and 
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twiddle factor multiplication. First, we do this operation on rows 

followed by columns. Then, we compute local 2D DFT on each sub 

block. In the last step, by rearranging this matrix according to a specific 

permutation, we obtain final 2D DFT. 

 

27. In the next chapter, we propose and explain an algorithm for 

implementation and discuss the block diagram of the algorithm. We 

also explain the functioning of Controller which is being designed. 
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WORKING ALGORITHM 
 

 

5.1 ALGORITHM 

 

 

28. In this project work, we are using Row Transpose Column 

method using simple Radix 4 algorithm to accomplish the task of 

calculating 2D FFT of the images being considered. Before we go 

further into details of the proposed work, it is imperative for us to 

understand Radix 4 algorithm, as such. 

  

 

5.1.1 RADIX 4 ENGINE  
 

29. As mentioned earlier in chapter 3, Radix 4 method involves a very 

easy technique of using twiddle factors 1,-1, j and –j. To understand 

this method easily, let us consider a simple Radix-4 butterfly unit. Such 

a butterfly unit takes 4 inputs and using 3 complex adders/ subtractors, 

4 outputs are generated sequentially. The block diagram representation 

is depicted in Fig 2. The basic operations in a Radix-4 butterfly are 

given by 4 equations, as given below. 

 

 

Y (0) = X (0) + X (1) + X (2) + X (3)   ------------- (J) 

 

Y (1) = X (0) – j X (1) - [X (2) - j X (3)] ----------- (K) 

 

Y (2) = X (0) - X (1) + X (2) - X (3) ----------------- (L) 

 

Y (3) = X (0) + j X (1) - [X (2) + j X (3)] ----------- (M) 
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Fig 2: Radix 4 Engine. 

 

  

 

 

 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control signals in Radix 4 Engine. 

 

Mode Output cs0 cs1 cs2 

0 0 X(0)  0  0  0 

0 1 X(1)  1  0  1 

1 0 X(2)  0  1  1 

1 1 X(3)  1  1  0 
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30. The 4 complex inputs are loaded in parallel to the input registers. 

The output to be generated for each set of inputs is controlled by mode 

select signal. The individual control signals cs0, cs1 and cs2 are derived 

from mode select signal. The adder/subtractor control signal selects 

adder or subtractor. Depending on the signal inputs cs0, cs1and cs2, 

output is generated as per the control signal table. Multiplication with j 

is done using a swap unit with a control signal to select whether to 

swap or not. Whenever swap is selected, depending on the Mode input, 

real and imaginary parts are swapped, and on similar lines, adders or 

subtractors are selected as per the 4 equations mentioned earlier. 

Another advantage of Radix 4 engine is that it can be operated in Radix 

2 mode also, by feeding 2 signals as inputs in any 2 input terminals and 

taking outputs by suitably selecting 2 output terminals. This feature 

proves to be very important for data sizes which are not integer powers 

of 4 e.g. N=32 and 128. This feature of radix 4 engine can be exploited 

to make a homogeneous design in which by taking a radix 4 engine as 

the basic building block and used repetitively across the design to 

accomplish calculation of higher point FFT. Using Radix 4 engine in 

Radix 2 mode in the final stage and in normal mode in all previous 

stages eases the process and makes the algorithm flexible too.  A Radix 

4 engine is the effective building block for this algorithm, around which 

all other elements are built. 

 

 

5.1.2. 16 INPUT RADIX 4 ENGINE 
 

31. Taking this knowledge a level higher, we intend to use 4 such 

Radix 4 engines in parallel (shown in Fig 3, henceforth to be referred to 

as 4R4 engine) thereby taking 16 inputs simultaneously and taking 4 

outputs depending on the mode inputs. This becomes another building 

block, along with Radix 4 engine. 

 

 

5.1.3. BLOCK DIAGRAM 
 

32. At the beginning of operation, input data is transferred into the on 

chip memory from external memory, and depending on the size, input 
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is taken into the engine, as per the required combination. Once we 

process this data using 4R4 engine, result will be saved in a buffer 

where we will have to undertake multiplication with suitable Twiddle 

factors. Depending on the size, we will repeat this operation to cover all 

the data inputs. After completing the first stage processing and 

multiplication with twiddle factors, we will undertake next stage 

activities, which involve repetition of the above said steps but with 

changed data input order and different twiddle factors. 

 

33. Controller takes the size of input data as input and calculates 

whether Radix 4 engine needs to be operated in Radix 2 mode, the 

number of iterations required for the data processing, how many 

repetitions each iteration consists of, as well as the mode inputs. It is 

intended to calculate all the twiddle factors required, in priory and store 

them in the form of Look up Tables for ready reference. 

 

 

 

 

Fig 3: 4 Input Radix 4 Engine. 
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Fig 4: 16 Input Radix 4 Engine. 
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34. Input data is fed to 4R4 engine through a multiplexer stage. 

Second set of input to this multiplexer stage is given from the output 

stage as a feedback which is given from different stages, decided by the 

controller. If the number of iterations required for complete 

computation of row FFT of all the data points in the dataset is not over, 

then the feedback comes from the lower stages. On the other hand, if 

the iterations are over in computing Row FFT, then this output is 

reordered and fed to Transpose stage, where the computed data is 

transposed before being fed back to compute the Column FFT. After 

execution of required number of iterations, data is again reordered and 

transposed. This transposed data will deliver the result in exactly the 

same order as the input data.  

 

35. Various twiddle factors for different data sizes are computed 

beforehand and stored as lookup tables. Depending on the requirement, 

particular set of twiddle factors are accessed from these tables and used 

during FFT computation. This eliminates the additional task of twiddle 

factor computation at run time. For ease of computation of twiddle 

factors, we are considering data sizes which are integer powers of 2. 
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Fig 5: Block Diagram. 
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MATLAB IMPLEMENTATION 
 

36. The algorithm proposed, is implemented in MATLAB in stages. 

In the first stage, a simple Radix 4 engine was designed. After 

designing, 4 such engines are initiated in parallel, which take 16 inputs 

(real or complex) and produce 4 outputs simultaneously depending on 

mode signal input.  

 

37. In the second stage, subroutines concerned with reordering 

function were written. Then, function to calculate twiddle factors was 

written. Later functions for buffering data after multiplication with 

twiddle factors and the main function which integrates all the 

subroutines were written. Finally, the code for integrating all these 

functions was written to get the final output. 

 

38.  For coding the algorithm in MATLAB, a matrix of order 64 is 

considered. To test the consistency of the algorithm, a MATLAB code 

was written for a 4*4 matrix. Later another Matlab code was written for 

a data size of 64. Program was tested for both real and complex inputs. 

Results were checked with those obtained from built in MATLAB 

functions. Results are matching till 3 decimal points. 
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CONCLUSION AND FUTURE WORK 
 

 

39. Literature survey of various DFT calculation and implementation 

techniques was carried out and then a suitable algorithm to implement 

2D DFT for Super Resolution application is proposed. Row Transpose 

Column technique is used for the said implementation. For calculating 

the DFT, Radix 4 algorithm is used. The algorithm was implemented in 

MATLAB obtaining desired results. 

  

40. The future work in this project would involve the following:- 

 

 (i) Hardware implementation of the algorithm on an FPGA 

 platform. 

 

 (ii) Analysis of performance testing and associated performance 

 enhancement of the hardware implementation of the algorithm.  
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