

IMPLEMENTATION OF

2-D FAST FOURIER TRANSFORM

FOR SUPER RESOLUTION

A Project Report

submitted in partial fulfillment of the

requirement for the Degree of

MASTER OF ENGINEERING

in

MICROELECTRONICS

by

Sqn Ldr K N Guruprasad

under the guidance of

Prof. S K Nandy

Department of Electronic Systems Engineering

Indian Institute of Science, Bangalore

Bangalore - 560012 (INDIA)

 JUNE 2014

i

ACKNOWLEDGEMENT

First and foremost, I express my sincere and heart-felt gratitude

to my adviser and guide, Prof. S K Nandy for his guidance and

support throughout. His foresighted suggestions have always come to

my help, whenever and wherever I stumbled.

I convey my sincere thanks to Gopinath Mahale for his

involvement and support in the project work which helped me in

understanding the subject well and carry out my tasks well. I offer my

sincere thanks to Kala Nalesh, for her critical guidelines that she

offered during this work. The Brainstorming sessions that I had with

both Gopinath and Kala, proved to be very vital in understanding the

topic as well as the work that I was expected to do. I express my

special thanks to Hamsika Mahale for helping me out during the

coding phase of the project. I wish them the best in all their future

endeavors.

I owe my thanks to all the faculties of IISc for their insightful

coursework. I thank the staff of DESE for their direct/indirect support,

making my stay comfortable at IISc. I am grateful to this Alma-Mater

for providing me an opportunity to interact with some of the brightest

minds in India. This 2 year stay in this institute has improved my

potential and changed the way I appreciate various technologies and

related subjects. This would prove critical in my future activities in

my parent organization.

I also offer my sincere thanks and best wishes to all my course

mates for making these 2 years, the most wonderful time of my life. I

wish this association grows stronger every passing day and brings in

many more wonderful moments in all our lives.

I thank Indian Air Force, my parent organization, for providing

me with this wonderful opportunity to do my post-graduation in this

esteemed institute, which marks a very important turning point in my

career and my life.

ii

I thank my family for supporting me during difficult times in my

life and motivating me to achieve many things during my stay in this

esteemed institution.

K N Guruprasad

Squadron Leader

08 Jun 14

iii

ABSTRACT

Constructing a higher resolution image from several low

resolution images is called Super Resolution. In Image Processing

applications, as data size increases, data processing becomes tedious

and time consuming. In order to reduce the effect of these factors, we

convert the image, which is in spatial domain, into frequency domain.

Fourier Transform is one very well-known method of representing

data in frequency domain. Fourier representation has been a topic of

intense research for over half a century now. To calculate the Fourier

Transform of images of bigger data sizes, various state of the art

methods are available. 2 D FFT algorithm is one such method, which

is used in this project work. In realizing this algorithm, we intend to

make use of Row-Transpose-Column method. Accessing Column

data increases the delay which is overcome by the Transpose

operation. Our method eases the complexity, as it will be a Row

operation, followed by a Transpose and finally another Row

operation. But this operation requires repeated data access from

memory. Further work is underway in this aspect.

iv

CONTENTS

ACKNOWLEDGEMENT. i

ABSTRACT. iii

LIST OF EQUATIONS. vi.

LIST OF FIGURES. .vii

1. INTRODUCTION1

2. OVERVIEW OF FOURIER REPRESENTATION 3

2.1 Fourier Series. .3

2.2 1-D Fourier Transform . 4

2.3 2-D Fourier Transform. .4

3. DISCRETE FOURIER TRANSFORM 7

 3.1 Methods to compute DFT. 7

 3.1.1 Brute Force method . 7

 3.1.2 Matrix multiplication method. 8

 3.2 Fast Fourier Transforms . 8

3.2.1 Radix 2 method . 9

3.2.2 Radix 4 method. . . 9

 3.2.3 Split Radix method 10

4. AVAILABLE ALGORITHMS11

 4.1 Available Algorithms. 11

 4.1.1 Row Column decomposition method 11

 4.1.2 Row Transpose Column method 12

 4.1.3 Sparse Matrices method .13

v

5. WORKING ALGORITHM. 15

 5.1 Algorithm. 15

 5.1.1. Radix 4 Engine. . 15

 5.1.2. 16 Input Radix 4 Engine. 17

 5.1.3. Block Diagram. 17

6. MATLAB IMPLEMENTATION .22

7. CONCLUSION AND FUTURE WORK. 23

8. BIBLIOGRAPHY 24

vi

LIST OF EQUATIONS

(A) 1 Dimensional DFT. .4

(B) 1 Dimensional IDFT. 4

(C) 2 Dimensional DFT. 5

(D) 2 Dimensional IDFT. 5

(E) Symmetry Property. .7

(F) Periodicity Property .7

(G) Matrix Multiplication method. 8

(H) 2 D Matrix Multiplication method 8

(J), (K), (L) & (M) Radix 4 Butterfly Equations. 15

vii

LIST OF FIGURES

Fig 1: Row Transpose Column method Block Diagram..13

Fig 2: Radix 4 Engine . 16

Fig 3: 4 Input Radix 4 Engine….18

Fig 4: 16 Input Radix 4 Engine….19

Fig 5: Block Diagram of the implementation 21

INTRODUCTION

1. Now a days, providing fool proof security to various installations

like airports, railway stations, banks, defence establishments and etc. is

of utmost critical importance. Various security systems are available in

market for ready use. These security systems keep monitoring the area

of interest and allow access to people whose details are provided in

their database. Data provided in these database, can be used to

determine whether to provide or prevent access to area of importance.

Face recognition is one such process, where we compare the facial

features of a person and accordingly process his access request.

2. For efficient and reliable working of a face recognition system,

we need high resolution images of personnel. Super resolution is a

process of constructing a high resolution image from a single or

multiple low resolution images. In a face recognition system, the

images captured by surveillance cameras are generally of low

resolution. When these low resolution images are fed to a face

recognition system, the performance of the system is poor. Hence,

before forwarding the image to a face recognition system, the resolution

of the image needs to be enhanced. Several reconstruction techniques

are already in use in the image processing field. These techniques

improve the performance and reliability of a face recognition system. In

this regard, converting image data (which is in spatial domain) into

frequency domain becomes an unavoidable requirement in order to

ensure easy and fast data processing.

3. This frequency domain representation is achieved by using

various techniques. Fourier analysis is one such technique. Fourier

analysis in itself has been a topic of very intense research in the past

half a century. Basic principle of Fourier analysis is representing any

signal as a complex sum of Sine and Cosine terms. As image size

increases, representing it in Fourier (frequency) domain becomes more

2

and more difficult. Therefore, parameters of main concern here are size

of data and complexity in computation involved. Towards this, a brief

overview of several prevalent algorithms/techniques related to Fourier

representation is presented in this report.

4. In Chapter 2, a brief overview of Fourier representation is

presented followed by various popular and frequently used methods to

calculate Discrete Fourier transform, in Chapter 3 and 4 respectively. In

Chapter 5, some of the available computation algorithms are discussed.

In Chapter 6, the status of implementation of the algorithm in

MATLAB is presented followed by concluding remarks and the future

work in Chapter 7.

3

OVERVIEW OF FOURIER

REPRESENTATION

2.1 FOURIER SERIES

5. Jean Baptist Joseph Fourier, a French mathematician, had

invented during early 19
th

 century that any function that repeats

periodically, can be expressed as a sum of sine and/or cosine relations

of various frequencies, each multiplied by a coefficient. No matter how

complicated the function is; it can be represented by such a sum, if it is

periodic & meets some mathematical condition. Such a sum is now

called Fourier series. On the other hand, functions which are finite but

not periodic in nature can also be represented as an integral of sine and

cosine functions multiplied by a weighing function. We call this

representation as Fourier Transform.

6. Both Fourier series and Fourier transform representations have an

important characteristic which enables them to reconstruct the input

function with no loss of information. This allows us to work in the

“Fourier domain” and then return to the original domain of the function

without losing any information. As a result of intense research in

Fourier analysis, enormous improvements in digital computation and

discovery of various state of the art technologies and formulation of

various algorithms/techniques to obtain Fourier representations, signal

processing industry is attaining greater importance, every passing day.

In this report, only those functions which have finite duration are

discussed as the subject of discussion is an Image, which is a 2

dimensional function in spatial domain.

4

2.2 1 D FOURIER TRANSFORM

7. Fourier transform, commonly called as Discrete Fourier

Transform (hence forth called DFT) of a discrete function x (n), n=0, 1,

2 ...N-1, is given by equation (A). Similarly, to reconstruct the original

function, we use Inverse Discrete Fourier Transform (hence forth called

IDFT), given by equation (B). (A) and (B) together, are called Discrete

Fourier Transform pair. A Discrete Transform Pair has an important

property, that, unlike the continuous case, we need not be concerned

about the existence of the DFT or IDFT. The Discrete Fourier

transform and IDFT always exist.








1

0

/2)()(
N

n

NnkjenxkY 

 k = 0, 1, 2...N-1. ---(A)

 k = 0, 1, 2...N-1 ---(B)

8. In order to compute the forward and reverse transforms, we start

by substituting k=0 in the exponential term and then take the sum for all

values of n. This is followed by k=1, 2, N-1. As is evident, it takes

approximately N² multiplications and N (N-1) additions to represent the

function in the other domain. For simplicity and better understanding,

we confine our discussion in this report to finite quantities. These

comments are directly applicable to both 1 and 2 dimensional functions.

2.3 2 D FOURIER TRANSFORM

9. A data is said to be 2 dimensional if it is arranged in a matrix, i.e.

Row-Column format. An image is one good example of such data.

Extension of the 1 dimensional Discrete Fourier transform and its







1

0

/2)()(
1

N

n

NnkjekYnx
N



5

inverse to 2 dimensions is straightforward. The DFT and IDFT of a

function (image) f(x,y) of size M*N is given by the equations (C) and

(D).














1

0

)//(2

1

0

21
21

),(),(
M

x

NykMxkj

N

y

efY yxkk


---(C)

 k1= 0,1,2,...M-1; k2 = 0,1,2,...N-1.

 ---(D)

 x= 0, 1, 2...M-1; y = 0, 1, 2...N-1.

10. In these equations, the variables k1, k2 are frequency variables

while x and y are spatial variables. If f (x, y) is real, then its Fourier

transform is conjugate symmetric. It is difficult to make any direct

associations between specific components of an image and its

transform. However, some general statements can be made about the

relationship between the frequency components of the Fourier

transform and spatial characteristics of an image. For instance, since

frequency is directly related to rate of change, we can intuitively

associate, very comfortably frequencies in the transform with patterns

of intensity variations in the image. Usually, slowest varying frequency

component corresponds to the average gray level of an image. As we

move away from the origin of the transform the low frequencies

correspond to the slowly varying components of the image. The higher

frequencies correspond to faster gray level changes in the image. These

are the edges of objects and other components of an image which have

abrupt changes in gray level.

11. An important property of 2D DFT is that, it is separable. It means,

we can take first 1D DFT row-wise and then take another 1D DFT













1

01

)//(2

1

02

21),(),(21
1

M

k

NkMkj

N

k

yx

MN
ekkYyxf 

6

column-wise within appropriate boundary conditions. For

standardization, we will be considering square matrices, in other words,

images with same number of rows and columns, both being integer

powers of 2. Calculating DFT of a test data involves complex

multiplications and additions. As the data size increases, the number of

such complex multiplications and additions involved in calculating

DFT of the test data increases very rapidly, running into several orders

of magnitude. In order to overcome such a computation intensive

situation, reduce the complexity and make such calculations faster,

various techniques and algorithms are developed. We will discuss some

of these techniques in the following Chapters.

7

DISCRETE FOURIER TRANSFORM

3.1 METHODS TO COMPUTE DFT

12. Calculating DFT of an N point sequence requires N² complex

multiplications and additions. For smaller values of N, handling so

many computations does not project any major difficulties. But as the

data size (N) starts increasing, we face a very highly computation

intensive task. Before we discuss how to overcome this

computationally intensive difficulty, let us briefly discuss various

methods of calculating DFT.

3.1.1 BRUTE FORCE METHOD

13. In this method, we use standard equations, (A) and (B) to

calculate 1D DFT whereas (C) and (D) to calculate 2D DFT. By

varying values of n, k successively for the first case and x, y, k1 & k2

in the second case, we compute DFT. As told before, this requires N²

complex multiplications and N(N-1) complex additions for all values of

a 1D DFT, not to mention the number of indexing and addressing

operations we need to do to fetch the data and to store the results. This

is inefficient as it does not exploit the Symmetry and Periodicity

properties of DFT given below.

Symmetry Property: ---(E)

Periodicity Property: ---(F)

)/(2/)2/(2 NkjNNkj ee   

)/(2/)(2 NkjNNkj ee   

8

3.1.2 Matrix Multiplication Method

14. In this method, we represent the input sequence as a column

vector of N rows (for 1D data) or as an N*N matrix (2D data). Their

respective DFTs are obtained by multiplying these matrices with an N

order square matrix called Twiddle Factor matrix, as shown below.

Y′ = F X ′ ---- (G)
Where X is input matrix, Y is DFT matrix,

 F =































)1)(1()1(3)1(2)1(
1

......

)1(3
.

963
1

)1(2642
1

)1(32
1

1..111

NNNNN

N

N

N









For 2D data, we follow a procedure as mentioned below,

NM FXFY ** ---- (H)

where FM and FN are Twiddle factor matrices for M rows and N

columns, X is input data while Y is the DFT matrix.

3.2 FAST FOURIER TRANSFORMS

15. In order to overcome the challenge of intense computation and

speed, various new approaches have been invented. By adopting

suitable methodology, we can make the entire process of calculating the

DFT easier and simpler. Divide-and-Conquer approach is one such

,/2 Nje  

9

technique. The main essence of this approach is to divide the input

signal into smaller sequences and successively calculate DFTs for those

smaller sequences. In this regard, many techniques are prevalent out of

which some important ones will be discussed in the next few

paragraphs.

3.2.1 RADIX 2 METHOD

16. In this method, we consider N to be an integer power of 2 and

divide the entire input sequence into even and odd numbered sub

sequences. Now the N point DFT can be expressed in terms of DFTs of

these subsequences which are periodic with period N/2. In the next step

we divide these 2 subsequences further into 2 each subsequences (total

of 4) and take their DFT. This approach is repeated till we reduce the N

point input sequence into N 1 point sequences. At the end, the number

complex multiplications required, will reduce from N² to N log₂ N.

This method has an advantage of being very simple and hence easy to

implement. However, when N takes higher values, implementation uses

considerable amount of resources for computation, which in turn

becomes slower.

3.2.2 RADIX 4 METHOD

17. When the number of data points N in the DFT is a power of 4, we

can, of course, always use a radix-2 algorithm for the computation.

However, for this case, it is more efficient computationally to employ a

radix-4 FFT algorithm. In this method, we divide the input sequence

into 4 N/4 length subsequences, after which we follow a modified

procedure which loosely resembles Radix 2 method. With this method

we are able to reduce complex multiplications by 25% but the additions

increases by 50%. Further details about this method will be discussed

later in Chapter 4.

10

3.2.3 SPLIT RADIX METHOD

18. An inspection of the radix-2 method indicates that the even-

numbered points of the DFT can be computed independently of the

odd-numbered points. This suggests the possibility of using different

computational methods for independent parts of the algorithm with the

objective of reducing the number of computations. The split-radix FFT

(SRFFT) algorithms exploit this idea by using both Radix 2 and Radix

4 decomposition in the same FFT algorithm.

19. Thus the N-point DFT is decomposed into one N/2-point DFT

without additional twiddle factors and two N/4-point DFTs with

twiddle factors. The N-point DFT is obtained by successive use of these

decompositions up to the last stage. Thus we obtain SRFFT algorithm.

20. There are a few more methods which use higher radices like

Radix 8, powers of 2, 4, 8, 16 and etc. But implementing these methods

becomes more and more complex as too many parameters are involved

in their implementation as well as possessing non homogeneous

structure. With this background, we restrict our discussion of various

methods/algorithms of calculating DFT to this point, while focusing our

attention to a method which we intend to use in our implementation.

11

AVAILABLE DFT ALGORITHMS

4.1 AVAILABLE ALGORITHMS

21. Most of the methods that we discussed briefly, in the previous

chapter, have been implemented commercially, with considerable

success. Huge amount of research and analysis efforts have been put in

for implementing these methods into hardware. During the last couple

of decades, these efforts have resulted in publishing of several literature

works. While implementing a 2D FFT, we need to take various

parameters like data size, speed of operation and resources available

among others, into consideration. A delicate compromise will have to

be made between size, memory resources and speed of operation. We,

in the next section, carry out a qualitative study of some of the methods

which are presented in these literatures.

4.1.1 ROW COLUMN DECOMPOSITION
 [10]

22. As we know that image data is stored in 2 dimensional matrices

consisting of rows and columns, a simple method of processing this

data is by using Row Column operations, as done in general matrices

operations. In Row Column decomposition method, a 2D DFT on N*N

data is computed by first performing N row-wise 1D DFTs and then N

column-wise 1D DFTs. If these 1D DFTs are implemented using FFT,

the computational complexity is N² log₂N. In implementations like this,

input 2D data is initially stored in the external memory and DFT

operations are carried out. When we make use of SRAM for such data

storage, for smaller data sizes, implementation performs very well, as

row and column access times are same. For large data sizes, using

SRAM becomes impractical due to limited size and high cost. Using

SDRAM with larger capacity, as external memory for larger data sizes

proves effective due to high throughput and high capacity.

12

23. We know that SDRAM is arranged in 3D structure consisting of

rows and columns, which are again arranged in banks, it has non

uniform access time; accessing consecutive elements in a row has lower

latency than accessing data across different rows, which has high

latency. As a result, row-wise DFTs are much faster than column-wise

DFTs. Even as we use DDR2 or DDR3 standards for SDRAM, existing

memory interfaces fail to utilize bandwidth of SDRAM device for

column DFTs. This method gives poor performance even when we

custom design the memory interface. Hence, data transfer between off-

chip and on-chip memories is the most critical bottleneck.

4.1.2. ROW TRANSPOSE COLUMN DECOMPOSITION
[11]

24. This method resembles the previous method to a large extent.

However, the difference between the two methods lies in the point that

additional transpose operation is added here which makes this method

to be better than the previous one. The problem of data transfer between

memories is addressed by undertaking additional transpose operations.

After taking row-wise 1D DFT, we save the result of first step as a

transposed matrix.

25. As next step, we take another row-wise 1D DFT on this

transposed matrix, this time, actually taking DFT on the column data.

Once DFT calculation is over, data is saved in the same order. To get

the final result, we need to do another transpose operation, which puts

the result into actual order in which the input data was initially

accessed. Even though the performance is improved, requirement of

transferring data to and from memory for repeated transpose operations

makes it cumbersome and inefficient for large data sizes. Figure below

shows the block diagram representation of this method and practically

how this method is achieved.

13

Fig 1: Row-Transpose-Column method with Block Diagram.

4.1.3. SPARSE MATRICES MULTIPLICATION METHOD
[7]

26. Another way of computing 2D DFT is to use Sparse matrices

multiplication method. The data is partitioned into a mesh of sub blocks

in both rows and columns, each sub block having a predetermined

number of rows and columns, perform butterfly operations between sub

blocks which involve data exchange with individual elements and

14

twiddle factor multiplication. First, we do this operation on rows

followed by columns. Then, we compute local 2D DFT on each sub

block. In the last step, by rearranging this matrix according to a specific

permutation, we obtain final 2D DFT.

27. In the next chapter, we propose and explain an algorithm for

implementation and discuss the block diagram of the algorithm. We

also explain the functioning of Controller which is being designed.

15

WORKING ALGORITHM

5.1 ALGORITHM

28. In this project work, we are using Row Transpose Column

method using simple Radix 4 algorithm to accomplish the task of

calculating 2D FFT of the images being considered. Before we go

further into details of the proposed work, it is imperative for us to

understand Radix 4 algorithm, as such.

5.1.1 RADIX 4 ENGINE

29. As mentioned earlier in chapter 3, Radix 4 method involves a very

easy technique of using twiddle factors 1,-1, j and –j. To understand

this method easily, let us consider a simple Radix-4 butterfly unit. Such

a butterfly unit takes 4 inputs and using 3 complex adders/ subtractors,

4 outputs are generated sequentially. The block diagram representation

is depicted in Fig 2. The basic operations in a Radix-4 butterfly are

given by 4 equations, as given below.

Y (0) = X (0) + X (1) + X (2) + X (3) ------------- (J)

Y (1) = X (0) – j X (1) - [X (2) - j X (3)] ----------- (K)

Y (2) = X (0) - X (1) + X (2) - X (3) ----------------- (L)

Y (3) = X (0) + j X (1) - [X (2) + j X (3)] ----------- (M)

16

Fig 2: Radix 4 Engine.

Control signals in Radix 4 Engine.

Mode Output cs0 cs1 cs2

0 0 X(0) 0 0 0

0 1 X(1) 1 0 1

1 0 X(2) 0 1 1

1 1 X(3) 1 1 0

17

30. The 4 complex inputs are loaded in parallel to the input registers.

The output to be generated for each set of inputs is controlled by mode

select signal. The individual control signals cs0, cs1 and cs2 are derived

from mode select signal. The adder/subtractor control signal selects

adder or subtractor. Depending on the signal inputs cs0, cs1and cs2,

output is generated as per the control signal table. Multiplication with j

is done using a swap unit with a control signal to select whether to

swap or not. Whenever swap is selected, depending on the Mode input,

real and imaginary parts are swapped, and on similar lines, adders or

subtractors are selected as per the 4 equations mentioned earlier.

Another advantage of Radix 4 engine is that it can be operated in Radix

2 mode also, by feeding 2 signals as inputs in any 2 input terminals and

taking outputs by suitably selecting 2 output terminals. This feature

proves to be very important for data sizes which are not integer powers

of 4 e.g. N=32 and 128. This feature of radix 4 engine can be exploited

to make a homogeneous design in which by taking a radix 4 engine as

the basic building block and used repetitively across the design to

accomplish calculation of higher point FFT. Using Radix 4 engine in

Radix 2 mode in the final stage and in normal mode in all previous

stages eases the process and makes the algorithm flexible too. A Radix

4 engine is the effective building block for this algorithm, around which

all other elements are built.

5.1.2. 16 INPUT RADIX 4 ENGINE

31. Taking this knowledge a level higher, we intend to use 4 such

Radix 4 engines in parallel (shown in Fig 3, henceforth to be referred to

as 4R4 engine) thereby taking 16 inputs simultaneously and taking 4

outputs depending on the mode inputs. This becomes another building

block, along with Radix 4 engine.

5.1.3. BLOCK DIAGRAM

32. At the beginning of operation, input data is transferred into the on

chip memory from external memory, and depending on the size, input

18

is taken into the engine, as per the required combination. Once we

process this data using 4R4 engine, result will be saved in a buffer

where we will have to undertake multiplication with suitable Twiddle

factors. Depending on the size, we will repeat this operation to cover all

the data inputs. After completing the first stage processing and

multiplication with twiddle factors, we will undertake next stage

activities, which involve repetition of the above said steps but with

changed data input order and different twiddle factors.

33. Controller takes the size of input data as input and calculates

whether Radix 4 engine needs to be operated in Radix 2 mode, the

number of iterations required for the data processing, how many

repetitions each iteration consists of, as well as the mode inputs. It is

intended to calculate all the twiddle factors required, in priory and store

them in the form of Look up Tables for ready reference.

Fig 3: 4 Input Radix 4 Engine.

Radix

4

Engine

x(0

)
X(2)

)

x(1

)
X(1) x(2

)
X(3) x(3

)

X(0)

19

Fig 4: 16 Input Radix 4 Engine.

x(0)

X(8)

X(0)

X(4)

X(12)

X(13)

X(1)

X(9)

X(5)

X(2)

X(6)

X(10)

X(14)

X(3)

X(7)

X(11)

X(15)

x(5)

x(1)

x(2)

x(3)

x(4)

x(6)

x(12)

x(13)

x(14)

x(15)

x(8)

x(9)

x(10)

x(11)

x(7)

RADIX

4

ENGINE

RADIX

4

ENGINE

RADIX

4

ENGINE

RADIX

4

ENGINE

20

34. Input data is fed to 4R4 engine through a multiplexer stage.

Second set of input to this multiplexer stage is given from the output

stage as a feedback which is given from different stages, decided by the

controller. If the number of iterations required for complete

computation of row FFT of all the data points in the dataset is not over,

then the feedback comes from the lower stages. On the other hand, if

the iterations are over in computing Row FFT, then this output is

reordered and fed to Transpose stage, where the computed data is

transposed before being fed back to compute the Column FFT. After

execution of required number of iterations, data is again reordered and

transposed. This transposed data will deliver the result in exactly the

same order as the input data.

35. Various twiddle factors for different data sizes are computed

beforehand and stored as lookup tables. Depending on the requirement,

particular set of twiddle factors are accessed from these tables and used

during FFT computation. This eliminates the additional task of twiddle

factor computation at run time. For ease of computation of twiddle

factors, we are considering data sizes which are integer powers of 2.

21

Fig 5: Block Diagram.

I

N

P

U

T

22

MATLAB IMPLEMENTATION

36. The algorithm proposed, is implemented in MATLAB in stages.

In the first stage, a simple Radix 4 engine was designed. After

designing, 4 such engines are initiated in parallel, which take 16 inputs

(real or complex) and produce 4 outputs simultaneously depending on

mode signal input.

37. In the second stage, subroutines concerned with reordering

function were written. Then, function to calculate twiddle factors was

written. Later functions for buffering data after multiplication with

twiddle factors and the main function which integrates all the

subroutines were written. Finally, the code for integrating all these

functions was written to get the final output.

38. For coding the algorithm in MATLAB, a matrix of order 64 is

considered. To test the consistency of the algorithm, a MATLAB code

was written for a 4*4 matrix. Later another Matlab code was written for

a data size of 64. Program was tested for both real and complex inputs.

Results were checked with those obtained from built in MATLAB

functions. Results are matching till 3 decimal points.

23

CONCLUSION AND FUTURE WORK

39. Literature survey of various DFT calculation and implementation

techniques was carried out and then a suitable algorithm to implement

2D DFT for Super Resolution application is proposed. Row Transpose

Column technique is used for the said implementation. For calculating

the DFT, Radix 4 algorithm is used. The algorithm was implemented in

MATLAB obtaining desired results.

40. The future work in this project would involve the following:-

 (i) Hardware implementation of the algorithm on an FPGA

 platform.

 (ii) Analysis of performance testing and associated performance

 enhancement of the hardware implementation of the algorithm.

24

BIBLIOGRAPHY

[1] “Digital Signal Proccessing”, 3
rd

 edition, John G. Proakis,

Dimitris G. Manolakis.

[2] “Understanding FFT Application”, 2nd edition, Anders E

Zonst, Citrus Press, 2004.

[3] “Digital Image Processing”, 2nd edition, Rafael C. Gonzalez,

Richard C. Woods.

[4] “The FFT Via Matrix Factorizations”, A Key to Designing

High Performance Implementations, Charles Van Loan, Department of

Computer Science, Cornell University.

[5] “On Computing the 2-D FFT”, Dragutin Sevic, IEEE

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 5,

MAY 1999: 1429-1431.

 [6] “FAST FOURIER TRANSFORMS: A TUTORIAL REVIEW

AND A STATE OF THE ART”, P. Duhamel & M. Vetterli, Signal

Processing 19 (1990) Elsevier: 259-299.

[7] “FPGA Architecture for 2D Discrete Fourier Transform

Based on 2D Decomposition for Large-sized Data”, Chi-Li Yu, Jung-

Sub Kim, Lanping Deng, Srinidhi Kestur, Vijaykrishnan Narayanan &

B Chaitali, J Sign Process Syst (2011) 64:109–122(Springer).

[8] “A Hardware Acceleration Platform for Digital Holographic

Imaging”, Thomas Lenart, Mats Gustafsson & Viktor Owall, J Sign

Process Syst (2008) 52: 297–311(Springer).

 [9] “FAST FOURIER TRANSFORM ALGORITHMS WITH

APPLICATIONS”, A Dissertation presented to the Graduate School

of Clemson University by Todd Mateer, August 2008.

25

[10] “Generating FPGA accelerated DFT libraries”. IEEE

Symposium on Field-Programmable Custom Computing Machines

(FCCM) D’Alberto, P., et al. (2007), 173–184.

[11] “A Hardware Acceleration Platform for Digital Holographic

Imaging”, T. Lenart, M. Gustafsson, & V. Owall (2008). Journal of

Signal Processing System, 52(3), 297–311.

