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Abstract

As complex SoCs have higher risk of respin, FPGA (Field Programmable Gate Array)

emulation is more reliable way of pre-silicon SoC validation compared to software sim-

ulations. Other than functionality validation of SoC design, FPGA emulation allows

concurrent development and testing of software that drives the SoC and field testing of

SoC design.

Direct implementation of an ASIC design in a FPGA using the same RTL design

methodology will not yield better performance and resource utilization. The design needs

to be optimized for the FPGA architecture. This report presents the methods used to

optimize a design, described in a high-level (above RTL) behavioral description. This

also covers some of the coding practices that should be followed for better FPGA area

utilization. The targeted FPGA is a Xilinx virtex-6 device using Xilinx synthesis tool.
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Chapter 1

Introduction

1.1 Overview of REDEFINE

REDEFINE is a polymorphic ASIC comprises of a reconfigurable Fabric and a Support

Logic to control the resources on the Fabric. Fabric is an array of tiles interconnected in

a toroidal honeycomb topology. Each tile comprises a CE and a router. Figure 1.1 is a

reproduction of the architecture that appears in [1]. Unlike FPGAs, where configurable

logic blocks (CLBs) are SRAM based memory lookup tables used to define application

specific data paths, in REDEFINE application specific data paths are defined in terms of

computational structures at runtime. A computational structure is a physical aggregation

of hardware resources (CEs and routers) that perform a coarse grained operation, referred

as a Hyper Operation (HyperOp). In REDEFINE applications are specified in a High

Level Language (HLL). RETARGET is the compiler tool chain that is used to compile

applications to a intermediate form and convert it into data flow graphs [2]. The compiler

determines HyperOps that are sub-graphs of application data flow graph and comprise

elementary operations that have strong producer-consumer relationship. These Hyperops

are further divided into several partial HyperOps (p-HyperOps) and each p-HyperOp

is assigned to a CE. RETARGET captures the computations to be performed by each

p-HyperOp in terms of Compute Metadata and inter/intra HyperOp communication in

terms of Transport Metadata. The Support Logic, at runtime launches the HyperOps on

the execution fabric following a dynamic data flow schedule. Each HyperOp is assigned to

a set of CEs which are interconnected through routers during runtime to form a pattern

1



2 FPGA Emulation of REDEFINE

that closely matches the communication pattern of that particular application. This

results in creation of different execution patterns on the Fabric both in space and time.

REDEFINE has support for global memory, which is accessible through Load Store Unit

(LSU) connected to access routers as shown in the figure. The global memory is used to

support vector operands, pointer based accesses and input/output data.
H

yperO
p Launcher

S
cheduler

R
B

IH
D

F

Tile

Access Router

Switch

Load Store Unit (LSU)

Access Router-Switch Common (Flit)

Switch-LSU Common (LSU Packet)
Switch-IHDF Common (IHDF Packet)

HyperOp Launcher-Switch Common (Instruction, 
data, operand, mask, Instruction mask packet) 

Figure 1.1: Architecture of REDEFINE

1.2 High-Level Synthesis

High-level synthesis allows the designer to write high-level (above RTL) behavioural de-

scriptions of a design that can be automatically converted into synthesizable RTL code.

High-level code describes the operation on different data types of a hardware design with-

out specifying the required resources and schedule of cycles. Thus, high-level synthesis

offers the advantage of automatic handling of the scheduling and synchronization issues of

a design, which helps in faster architectural exploration leading to reduced design time and
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increased productivity. Gate-level designs are further synthesized using other downstream

tools to generate ASICs or FPGAs.

The REDEFINE architecture is designed using one such High-Level Synthesis tool

called Bluespec Compiler, in which the high-level specifications of the hardware designs

are described in Bluespec System Verilog (BSV).

1.3 Contribution of the Report

The BSV generated RTL for the Fabric without any modifications for FPGA architecture

was not able fit in single FPGA device that is available in the market. As REDEFINE

architecture supports parametrizable Fabric size (figure 1.1 shows 8×8 Fabric size), Fabric

with size reduced to 6 × 6 was tried. This alone barely fits in the FPGA device Virtex-6

LX760T, the biggest one currently available in the market.

This works includes efforts made to reduce the area utilization if the REDEFINE

design, with out considering the timing performance. The objective was to fit REDEFINE

in single FPGA device by making coding modifications at BSV level and in the Bluespec

Verilog library files, instead of doing them in Verilog files generated by Bluespec compiler.

Some of the modifications proposed are not specific to the FPGA design.

1.4 Report Organization

The main theme of this work is to covers the coding practices that should be followed

for better FPGA area utilization. It also covers some of the architectural changes that

implements same functionality with less area utilization.

Chapter 2 covers the general optimization methods that are followed all over the RE-

DEFINE design for better area utilization.

Chapters 3 and 4 covers the methods that are specific to the respective modules in

REDEFINE. Chapter 3 covers the area efficient implementation of CE and Router and

chapter 4 covers the area efficient implementation of Support Logic individual modules.
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In Chapter 5, resource utilization of the individual modules of the REDEFINE when

implemented on a Virtex-6 FPGA device are shown. A comparison is done between the

FPGA resource utilization before and after applying the changes.



Chapter 2

General Optimization Methods

In this chapter, the methods used to reduce the FPGA resource utilization of REDEFINE

design are discussed. These methods are used all over the design and are not unique to

the REDEFINE architecture.

2.1 Restricted usage of Tagged Unions

A union is a variable that can hold (at different times) component values of different

types and sizes, with complier keeping track of size and alignment requirements. When

a component is injected into a union value, it loses its identity i.e., there is no way to

know which summand it came from. In tagged unions, a union value always has a tag

that “remembers” which summand it came from [3]. System Verilog has ordinary unions

as well as tagged unions, but the BSV uses only tagged unions as they provide complete

type-safety, greater brevity and more visual apparent notation.

A typical usage of tagged union

typedef union tagged { Bit#(32) Data;

Bit#(3) OpCode;

} U deriving (Bits);

U x;

5



6 FPGA Emulation of REDEFINE

In a tagged union the member names are called tags. Tags play a very important safety

role. In the above usage variable x not only contains the bits corresponding to one of its

member types Bit#(32) or Bit#(3), but also some extra bits (in this case just one bit)

that remember the tag, 0 for Data and 1 for OpCode. When the tag is Data, it is impossible

to read it as a OpCode member, and when the tag is OpCode it is impossible to read it as

an Data member, i.e., the syntax and type checking ensure this. Thus, it is impossible

to accidentally misread what is in a tagged union value. deriving (Bits) is optional,

which tells the compiler to select a default bit-representation (pack and unpack functions

[4]) for tagged unions. The representation consists of t+m bits, where t is the minimum

number of bits to code the tags in this tagged union and m is the size of the largest

member in bits. Every tagged union value has a code in the t-bit field that identifies the

tag, concatenated with the bits of the corresponding member which is right-justified in

the m-bit field. If the member needs less than m bits, the remaining bits (between the

tag and the member bits) are undefined (don’t care). If deriving (Bits) is not used,

then the programmer has to define the bit-representation i.e., pack and unpack functions

for the tagged unions explicitly along with the unused bits of the member.

Though usage of tagged unions simplifies verification and improves readability of the code,

they have implementation overhead with respect to logic cells. So misuse of tagged unions

implements redundant logic cells in the design. The BSV snippet below shows one such

usage.

typedef union tagged { Bit#(32) Operand1;

Bit#(32) Operand2;

Bit#(3) OpCode;

} Packet deriving(Bits);

module mkUnion_sys(IFC);

// Instantiation of mkFunctionalUnit module

FU fu <- mkFunctionalUnit;

Wire#(Packet) dataIn <- mkWire;

.....

rule rl_put;

fu.input_port(dataIn);



General Optimization Methods 7

endrule

.....

endmodule

Example 2.1 - Misuse of tagged Unions

in
p
u
t
p
o
rt

fu
3
2
1
0

2’d2

34 32

2

34

in
p
u
t
p
o
rt

fu

3
2
1
0

2’d2

2

0
1

329’d0 29

2

3

29

34 34

(a) (b)

2

Figure 2.1: Logic generated from usage of tagged unions (a) Default bit-representation
(b) User defined bit-representation with unused bits assigned to zero

In Example 2.1, dataIn wire in mkunion_sys module connects to fu module’s input_port.

As the data in wire is tagged union it is implemented with some logic overhead. The logic

overhead is due to the mismatch in the number of members (3) defined and the possible

number of members (4) that can be represented using tag-bits. As shown in Figure 2.1.(a),

BSV implements a multiplexer at the tag-bits to ensure functional correctness (it ensures

that tag-bits doesn’t represent the members other than defined). If bit-representation is

user defined then logic overhead may increase as shown in Figure 2.1.(b). In mkUnion_sys

there is no requirement to examine the value in tagged union variable. So the data to be

transferred to the fu module need not be a tagged union. The redundant logic can be

avoided by restricting usage of tagged unions only when there is requirement to examine

the value in the tagged union. Instead of using Packet, Bit#(SizeOf#(Packet)) (SizeOf

is used to convert a type t into the numeric type representing its bit size [5]) should be

used and when ever there is requirement to examine the value it can be converted back

to Packet using unpack function.

This applies to Enumeration data type also and same technique is used to avoid re-

dundant logic generated from misuse of enumerations.
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2.2 Multiplexer Restructuring

Multiplexers are the common building block for data-paths and are used extensively in

number of applications. Xilinx FPGAs provide dedicated multiplexer resources, which

can implement multiplexers efficiently. The inference of these dedicated FPGA resources

is more sensitive to HDL coding style. BSV generated Verilog has multiplexers described

in full parallel case statement and full non-parallel case statement and this coding style

consumes more lookup tables (LUTs). This section discusses the multiplexers described

using full parallel and full non-parallel case statements and method used to implement

them efficiently on an FPGA.

• A “full” case statement is a case statement in which all possible case-expression

binary patterns can be matched to a case item or to a case default [6].

• A “parallel” case statement is a case statement in which it is only possible to match

a case expression to one and only one case item [6].

Full non-parallel case statement

Example 2.2 shows a case statement that is full and non-parallel as case-expression can

be matched either to case item or to a case default and more than one case item can

potentially match the case expression. This simulate like a priority encoder where the

priority decreases along a,b,c and d respectively. This will also infer a priority encoder

when synthesized. Figure 2.2 shows the logic generated, according to the functionally it

is a 4:1 multiplexer with priority encoded select lines.

always@(a or b or c or d or in)

begin

case(1’b1)

a: out = in[0];

b: out = in[1];

c: out = in[2];

d: out = in[4];

default: out = 0; /* unspecified value */

endcase
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end

assign RDY_out = a || b || c || d; //validity of out

Example 2.2 - Full non-parallel case statement

in[0]

in[1]

in[2]

in[3]

abc

d

out

a
b

c
RDY out

0

1 0

1 0

1

Figure 2.2: 4:1 MUX implementation from a non-parallel case statement

Full parallel case statement

Example 2.3 is same as Example 2.2 except that a “synopsys parallel case” directive has

been added to the case header. This will simulate like a priority encoder but will infer

a non-priority encoder logic when synthesized, now the synthesized logic doesn’t match

the Verilog functional model. The “ synopsys parallel case” directive tells the synthesis

tool that these case items (a,b,c and d) are mutually exclusive i.e., at any point of time

exactly one case item is set to one and remain all are set to zero. Generally “parallel case”

directives are used in Verilog code for large ASIC design to remove stray priority encoders

and infer a smaller and faster design. Figure 2.3 shows the logic generated, according to

the functionally it is a 4:1 multiplexer with one-hot encoded select lines.

always@(a or b or c or d or in)

begin

case(1’b1) \\ synopsys parallel_case

a: out = in[0];

b: out = in[1];

c: out = in[2];

d: out = in[4];

default: out = 0; /* unspecified value */

endcase

end

assign RDY_out = a || b || c || d; //validity of out
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Example 2.3 - Full parallel case statement

d

a
b

c
RDY out

a

b

c

d

in[0]

in[1]

in[2]

in[3]

out

Figure 2.3: 4:1 MUX implementation from a parallel case statement

The resources required to implement a Boolean function on an FPGA depends only on

the number of inputs and outputs of the function, not on the complexity of the function.

The minimum number of inputs required for a Boolean function to implement a 4:1

multiplexer are 6, but in examples 2.2 and 2.4 8-inputs are used which is not efficient.

In Xilinx Virtex-6 FPGA each slice contains four 6-input LUTs and 3-multiplexers

F7AMUX, F7BMUX and F8MUX. These multiplexers are used to combine up to four

LUTs to generate any Boolean function of seven or eight inputs in a slice. These dedi-

cated multiplexers also allows implementing 8:1 multiplexer and 16:1 multiplexer in one

logic level using 2 LUTs and 4 LUTs respectively [7]. But there are limitations in the

ability of the synthesis tool to infer these dedicated multiplexers. FPGA synthesis tool

doesn’t synthesize the multiplexers described in parallel and non-parallel using dedicated

multiplexers present in the slice. To implement them efficiently the select lines should be

compressed which consumes extra LUTs. If the multiplexers occur in buses then these

select lines are shared among all the multiplexers in the bus. So when this technique

is applied to buses multiplexers over all LUT count reduces. Figure 2.4 shows the effi-

cient implementation of multiplexers. This technique can be applied to any multiplexer

of size greater than 3:1 because 3:1 multiplexers described using parallel and non-parallel

case statements is a 6-input boolean function, when implemented on a Virtex-6 FPGA

consumes only 1 LUT for one bit data size.
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Priority

Decoder

a

b
c

d

2

in[0]
in[1]
in[2]
in[3]

out

RDY out

1

2

3

One-Hot

Decoder

a

b
c

d

2

RDY out

(a) (b)

0 in[0]
in[1]
in[2]
in[3]

out
1

2

3

0

Figure 2.4: Restructuring multiplexers (a) non-parallel case statement (b) parallel case
statement

2.3 Optimizing Bluespec verilog library modules for Xilinx

FPGA

Fine-grain ASIC architecture have the ability to tolerate a wide range of RTL coding styles

while still allowing designers to meet design goals. Course-grain FPGA architecture are

more sensitive to coding styles and design practices. In many cases a slight modifications

in coding practices can improve the system performance anywhere from 10% to 100% [8].

BSV has inbuilt packages for commonly used modules in a design. These modules are

part of Bluespec library and should be added to the synthesis tool for complete synthesis

of the design. FIFO2, SizedFIFO and BRAM2 are more commonly used Bluespec library

modules in the REDEFINE design. This section discusses the changes made to these

Verilog modules for better FPGA area utilization.

FIFO2 and SizedFIFO

The corresponding BSV modules for FIFO2 are mkFIFO and mkFIFOF, FIFOs of depth

2 and for SizedFIFO are mkSizedFIFO and mkSizedFIFOF, FIFOs of parametrizable

depth. The main components of a FIFO are memory and write and read control units.

The Verilog snippet below show the instantiation of memory in FIFO2.

\\ FIFO2.v

reg [width - 1 : 0] data0_reg;

reg [width - 1 : 0] data1_reg;
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This synthesizes memory using registers and requires width size 2:1 multiplexer to read

data from this registers. The better way to implement this memory is using distributed

RAM, which eliminates data multiplexer. Similarly in SizedFIFO.v, to implement a n-

depth FIFO the memory is split between memory of size n-1 and a register stage at read

port, this is used to meet the timing performance in ASIC design. For better area utiliza-

tion this is combined as single memory and implemented as distributed RAM for FIFO

depth less than 64.

Simple Dual-Port BRAM

Xilinx BRAM resources can be configured as either simple dual-port (SDP) BRAM or

true dual-port (TDP) BRAM. In SDP configuration, BRAM has one port for synchronous

reads and one port for synchronous writes. In TDP configuration, BRAM has two port

each can synchronously read and write. BRAM in SDP mode uses only half of the re-

sources of BRAM in TDP mode of same size. In most of the time SDP serves the purpose

but Bluespec BRAM packages doesn’t have module that infer BRAM in SDP mode with

simultaneous read and write access. A module that infers a BRAM in SDP mode with

simultaneous write and read operations is written in Verilog and imported to BSV.



Chapter 3

Compute Element and Router

The execution engine of the REDEFINE, Fabric comprises a matrix of tiles. Each tile

comprises a compute element (CE) and router that connects CEs. The set of router

together serves as Network on Chip (NoC). CE comprises of Local Wait Match Unit

(LWMU), ALU and Transporter.
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Figure 3.1: Local Wait Match Unit
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LWMU shown in figure 3.1, consists of a storage unit, a selection and validation unit

and a custom instructions (CI) control unit. LWMU receives payloads which can be

an instruction or an operand or a control packet. The instructions and operands are

stored in storage unit.The control packet are directed to CI control unit or selection and

validation unit depending on its tag value. Selection and validation unit is responsible

for launching the instructions that are ready to be executed. Once all instructions in the

storage unit are executed it declares itself as free. In order to reduce the delay associated

with assignment of HyperOps to CEs, which get repeatedly executed, HyperOps can be

made persistent across multiple iterations of execution. If the instructions in the CE

are persistent then CI control unit keeps track of number of iterations the instructions in

storage unit are executed and restart every iteration depending on CI operation input and

CI control packet. LWMU forwards the instruction and their operands to the ALU for

execution. ALU is a combination of different functional units, depending on the opcode

of the instruction the data is transferred to corresponding functional unit. The ALU
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computes the result and forwards it to the Transporter along with transport metadata.

Figure 3.2 shows the block diagram of Transporter. The destination of the result from

ALU can be same CE or other CEs or Inter HyperOp Data Forwarder (IHDF) or Load

Store Unit (LSU). Using transport metadata the Transporter packs the result and forwards

it bypass-channel, if it is for the same CE otherwise it is forwarded to the router. The

router is responsible for sending packets to their respective destinations. The routers

implement a deterministic routing policy which allows in order packet delivery between

one source and destination pair. The router also supports deadlock free routing. Each

router has 4 input ports and 4 output ports, among which one input port and one output

port are connected to CE which is in the same tile as the router and the remaining 3 pair

of ports are connected to the other 3 routers in the three adjacent tiles. The access routers

differ from the ordinary routers in such way that instead of making a connection with CE,

it is connected to Support Logic. The access routers serve as gateway of communication

between Fabric and Support Logic. Figure 3.3 shows the block diagram of router, the

output-port to which the CE or Support Logic is connected will not have address update

logic as it is the destination port.
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3.1 Modifications done to reduce the FPGA area utilization

LWMU

The storage unit and the FIFO at read port of the storage unit in the figure 3.1 are

replaced with a simple dual-port BRAM.

ALU

• DSP48E1 slices are used to implement 32-bit arithmetic and logical operations.

The synthesis tool infers DSP48E1 slice from RTL code with ∗ operator. For other

arithmetic and logical operations DSP48E1 is instantiated using the macro provided

in the Xilinx library.

• The ASIC design of field multiplier functional unit does field multiplication in 3-

modes (8, 16 and 32-bit modes), Barrette reduction, shifting and rotating operations.

The resource utilized by field multiplier designed for ASIC on Virtex-6 FPGA is 1662

LUTs. It is redesigned to reduce the LUT count at the cost of increased cycles per

operation. The FPGA design of field multiplier does field multiplication in 3-modes

and Barrette reduction, a separate functional unit is designed to do shifting and

rotation operation. Table 3.1 shows the comparison of field multiplier design for

ASIC and FPGA.

Table 3.1: Comparison of ASIC and FPGA designs of Filed Multiplier

ASIC FPGA
design design

LUT 1662 410
Utilization (FM + Shifter)

Cycles�Operation

Shifting 1 1

Rotation 1 1

FM 8-bit Mode 1 4

FM 16-bit Mode 2 8

FM 32-bit Mode 4 16

Barrette Reduction 4 16

• In Verilog, a case statement with address as the selector expression and constants

assigned to those address will infer a distributed ROM in FPGA design. Example
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3.1 shows Verilog snippet that will infer 256 × 8-bit ROM when synthesized on a

FPGA.

always@(sbox_lut2_arg$wget)

begin

case (sbox_lut2_arg$wget)

8’d0: sbox_lut2_res$wget = 8’h00;

8’d1: sbox_lut2_res$wget = 8’h01;

8’d2: sbox_lut2_res$wget = 8’h8D;

.......

8’d254: sbox_lut2_res$wget = 8’h41;

8’d255: sbox_lut2_res$wget = 8’h1C;

endcase

end

Example 3.1 - Verilog HDL construct that infers ROM

The Bluespec generated Verilog will not assign constants to the address, if constant

and address are same. The Verilog snippet below is the Bluespec generated Verilog,

which will not infer a ROM when synthesized on a FPGA.

always@(sbox_lut2_arg$wget)

begin

case (sbox_lut2_arg$wget)

8’d0,8’d1: sbox_lut2_res$wget = sbox_lut2_arg$wget;

8’d2: sbox_lut2_res$wget = 8’h8D;

.......

8’d254: sbox_lut2_res$wget = 8’h41;

8’d255: sbox_lut2_res$wget = 8’h1C;

endcase

end

Example 3.2 - Bluespec generated Verilog that implements a ROM functionality

Though the functionality implemented by Verilog constructs in example 3.1 and 3.2

is same, design with example 3.1 will give better area and timing performance when
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synthesized on a FPGA. The AES custom functional unit in ALU has such ROM

implementation. For better performance the Bluespec generated Verilog has to be

modified as in example 3.1.

Router

To support deadlock free, the router uses virtual channels (VCs). Each input port of the

router has 4-virtual channel. Each virtual channel is implemented as FIFO of depth 4.

The incoming packet includes the destination VC number. Depending on availability of

packet in the VC and the availability of the destination port, one of the VC is selected

and its packet is sent to the output port. At any point of time, data is written to one of

the VCs and read from one of them. So instead of four memories and four FIFO write

and read control units, same functionality can be implemented using one memory and

four FIFO read and write control units which is more area efficient. Figure 3.4.(a) show

the implementation of virtual channel 3.4.(b) show the area efficient implementation of

virtual channel.
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Chapter 4

Support Logic

Support Logic controls the resources on the Fabric, it comprises of Scheduler, HyperOp

Launcher (HL), Resource Binder (RB) and Inter-HyperOp Data Forwarder (IHDF). This

chapter covers the functionality of support logic components and the modification made

to reduce the implementation logic of these components.

4.1 Scheduler

The primary task of the scheduler is to schedule the launching of a particular HyperOp

on to the Fabric. The scheduling is achieved in a data driven manner, based on the

availability of the input operands of the HyperOp. The Scheduler includes a Global Wait

Match Unit (GWMU) which holds the operands for all HyperOp instances that are yet

to be executed. Figure 4.1 shows the block diagram of a Scheduler. The GWMU unit

is organized as a set of lines, where each line can accommodate the maximum possible

inputs for a HyperOp instance. A HyperOp instance does not have an existence in the

global wait-match unit prior to the arrival of its first data input. A HyperOp instance

ceases to exist within the GWMU after it has been scheduled. Scheduler Lookup table

(Scheduler LUT) memory module stores the expected number of inputs for all HyperOps,

HyperOp type and the HyperOp predicate requirement, this data is generated by the

compiler and called as HyperOp metadata. Scheduler fetches HyperOp metadata, when

it receives the first input of the HyperOp from IHDF and stores them in tracker bits. On

the arrival of each input operand, the count field in the tracker bits is updated. When

19
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Figure 4.1: Scheduler

the count becomes equal to the expected count then the HyperOp instance is considered

ready to launch. The controller consults the tracker bits to determine the total number

of inputs expected for the HyperOp. HyperOp selection logic, which is implemented

as a multistage priority encoder selects one the HyperOps that can be scheduled and

sends HyperOp ID to RB, pMem and Resource LUT and HyperOp input operands to

HL. The function instance manager dynamically allocates a tag for the HyperOp if it

is of “Function HyperOp” type, this tag becomes part of the HyperOp instance. Once

the function return is indicated by the IHFD, the instance number of the corresponding

function is freed by the function instance manager. To reduce the launching time of an

HyperOp and scheduler predicts the next HyperOp that may be launched based on the

current HyperOp. This is implemented as static prediction based on the profiling. The

prediction data is preloaded into prefetch LUT. Prefetch LUT returns the next HyperOp

ID on providing the current HyperOp ID. Scheduler forwards this HyperOp ID to RB and

Resource LUT and a flag bit to HL indicating HyperOp scheduling in predict mode. If the

scheduler finds that the next HyperOp is the predicted HyperOp, it sends a request to the

RB to confirm the speculative placement and forwards input operands of the HyperOp

to HL. If the prediction was wrong then scheduler sends “squash” request to the RB to

squash the allocation of previous HyperOp.
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4.1.1 Modifications done to reduce the FPGA area utilization

The current version of REDEFINE has 64 lines in the GWMU. The size of tracking bits

for this GWMU are

• HyperOp ID : 64 × 10 - bits

• HyperOp Instance : 64 × 13 - bits

• Predicate : 64 × 1 - bits

• HyperOp Operand Count : 64 × 4 - bits

• HyperOp MetaData : 64 × 9 - bits

• Ready Status : 64 × 1 - bits

• Entry Valid : 64 × 1 - bits

These tracking bits are implemented as registers (has reset input). The GWMU holds

the operands of the HyperOp and the tracking bits holds the same HyperOp’s additional

information (HyperOp ID, instance number, predicate expected, operand count in GMU,

ready status, validity and metadata). Figure 4.2 shows the selection logic implementation
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Figure 4.2: (a) Selection logic (b) Area efficient implementation of selection logic

in the scheduler. “Ready Status” bits indicates that the HyperOp in the corresponding

scheduler line is ready to launch. The multistage priority encoder selects one of the

HyperOp among the ready HyperOps. The selected HyperOp ID and HyperOp instances

are send to the IHDF, which informs that the corresponding HyperOp is launched and its
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translation can be removed. This is implemented using 64:1 28-bit multiplexer described

using parallel case statement as shown in figure 4.2.(a). Except “Ready Status” and

“Entry Valid” bits, if these tracking bits are implemented as distributed RAM using

LUTs, the same functionality can be generated without this huge multiplexer.

4.2 HyperOp Launcher

HL transfers the instructions, constants, control packets, and input operands of a HyperOp

on to the Fabric for execution. Figure 4.3 shows the block diagram of HL and its interfaces

for the Fabric of size 6× 6. HyperOp is the atomic entity of execution and each HyperOp
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Figure 4.3: HyperOp Launcher

can occupy maximum of 25 (5 × 5) CEs on Fabric in the present version of REDEFINE.

Each HyperOp is partitioned into partial HyperOps (p-HyperOps) and each p-HyperOp

is configured to one CE in the Fabric. The resources (CEs) required to synthesize a

HyperOp on the Fabric is calculated at compile time and stored in the memory called

Resource Lookup Table (Resource LUT) as HyperOp configuration matrix which is of

size 5 × 5 (should be less than or equal to Fabric size). Each element in this matrix

represents one CE. The instructions, constants and control inputs to the HyperOp are

generated at compile time and stored in “imems”. The 5 (should be equal to row size
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of HyperOp configuration matrix) imems stores information required for the CEs in each

row of the HyperOp configuration matrix. The “pmem” provides the starting address and

the number of packets to be read from imems for each HyperOp. If the scheduling is in

pre-fetch mode the HL receives only instructions from imems. Scheduler sends the input

operands of the HyperOp to HL only when HyperOp scheduling is confirmed or scheduled

in non-pre-fetch mode. RB sends the position of CE corresponding to the (0, 0) element

in the HyperOp configuration matrix on Fabric. The HL updates the destination address

of the received packets with the (x, y) coordinates received from the RB and launches

them on to the Fabric through the access router nearest to the destination.

4.2.1 Modifications done to reduce the FPGA area utilization

The figure 4.3 includes the modification. In the previous implementation, HL has a

crossbar connections between Access Routers and imems as shown in the figure 4.4. As

imem0 imem1 imem2 imem3 imem4

AR0 AR1 AR2 AR3 AR4 AR5

Figure 4.4: HL crossbar connections to Access Routers for the Fabric of size 6 × 6

current implementation of RB doesn’t perform wrap search in the Fabric there is no

need for this crossbar connection. Without wrap search the maximum number of Access

Routers to which an imem can connect is (no. of Access Routers - no. of imems) +

1. For the Fabric of size 6 × 6 (6 Access Routers) and configuration matrix with 5

rows (5 imems), this is equal to 2. By removing this crossbar connection, five 5:1 76-

bit multiplexers are replaced with four 2:1 76-bit multiplexers. A parametrized BSV

code is written to implement HL without crossbar connections for any size of Fabric and

configuration matrix.
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4.3 Inter-HyperOp Data Forwarder

The IHDF enables exchange of data between two HyperOps. It is responsible for

1. Computing the tag for the destination HyperOps i.e. HyperOp Instance.

2. Keeps track of the location of the HyperOp so as to forward the results to it.

3. Store loop invariants (template data) and deliver them as and when needed.
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Figure 4.5: Inter-HyperOp Data Forwarder

Figure 4.5 shows the block diagram of IHDF. IHDF receives input operands for the

HyperOps from Fabric and forwards them to Scheduler. IHDF computes the instance of

the destination HyperOp using the producer instance number and a compiler hint. Based

on the HyperOp ID and the HyperOp instance IHDF performs a lookup in Instance

Lookup Table (Instance LUT) to find the location allocated for this HyperOp instance

in the GWMU. If a match is found data is forwarded to the identified location in the
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GMWU. If the match is not found a new entry is allocated and data is forwarded to that

location in GWMU.

If the data received is template data it is stored in Template Store.The Template

Store identifies the HyperOp Id and the instance number pattern of the HyperOps which

are expected to consume this data. Whenever the IHDF encounters a data transfer for

a HyperOp that matches the said ID and whose instance number matches the pattern

determined by the compiler, this template data is transferred to the global wait match

unit.

Other than these two, IHDF receives function return request. On receiving function

return request IHDF informs the scheduler to free the corresponding function instance.

When a HyperOp is scheduled, then the Scheduler sends the HyperOp ID and instance

to the IHDF to invalidate the translation maintained for that HyperOp in Instance LUT

and Template Store.

4.3.1 Modifications done to reduce the FPGA area utilization

The modules Instance Lookup Table and Template Store are organized as caches. Instance

Lookup Table is 4 way set associative cache and Temple Store is a directed mapped

cache. Memory with Tag and Data fields are implemented using BRAM and valid bits are

implemented using registers. Both have 1024 cache lines. To check the validity we access

4 valid bits corresponding to the cache line in Instance LUT and 1 valid bit in Template

Store which requires 1024:1 4-bit multiplexer and 1024:1 1-bit multiplexer respectively.

In BSV the Instance LUT valid bit registers are described as a register of size 4096 bits,

one 4096-bit left-shifter and one 4096-bit right-shifter are implemented to read these valid

bits. Instead it should be described as vector of 1024 registers of size 4-bits to implement

a 1024:1 4-bit multiplexer. Similar with the Template Store too.

4.4 Resource Binder

The resource binder determines the location on the fabric where the HyperOp is to be

placed. The HyperOps are dynamically placed to enable multiple applications to run
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simultaneously on the fabric. Fixing the location at compile time would allow only co-

compiled applications to run simultaneously. Every HyperOps resource requirement is

available in the Resource LUT. The requirement clearly specifies the number of CEs and

their relative position with regard to each other. The requirement is specified in the form

of a binary matrix. A 1 indicates that the CE at that position is desired. This matrix is

smaller than the fabric size. The current matrix size used is 5 × 5. The resource binder

tries to match the resource requirement with the CE availability matrix also referred to as

the fabric status. When a match is found, the resource binder returns the location in the

fabric status matrix where (0, 0) location of the resource requirement matrix matched.

Figure 4.6 shows the block diagram of RB. If the Fabric is heterogeneous i.e., some of the

CEs have special resources then HyperOps with some special functionality are synthesized

on these special CEs. In such case Resource LUT provides the location on the Fabric

where the HyperOp is to be launched. If the request from Scheduler is to “squash” the

previously launched HyperOp, RB sends reset to all the CEs of the previously HyperOp

once they have received the all instructions. This makes sure that the squash HyperOp

instructions doesn’t sit in LWMU of the CEs.
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Figure 4.6: Resource Binder

4.4.1 Modifications done to reduce the FPGA area utilization

The number of row searches that RB need to perform is equal to (no. of Fabric rows - no.

of HyperOp configuration matrix rows) + 1. The variable that holds this data should be

of size log2((no.ofFabricrows−no.ofHyperOpconfigurationmatrixrows) + 1). For the
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current implementation this count is 2 and the variable that holds this count should be of

size 1-bit. But it was declared as a 3-bit size variable. In BSV as the search algorithm was

described using loops this implements 8-searches which is redundant. Thus this variable

is changed to 1-bit size.

The notation followed by the RB to address a CE on Fabric is as follows (y × no. of

rows in the Fabric + x), where x and y numbers are column and row positions of CE

respectively both starting from 0. The search algorithm returns the row (y) and column

(x) position of the CE corresponding to (0,0) element in HyperOp configuration matrix.

Once the RB finds a location on the Fabric, it should declare the CEs that are assigned to

the HyperOp as busy. Due to the above notation used, multipliers are used to calculate

the position of the CE as these x and y values are not compiler time constants. This can

be avoided if the CEs are addressed using two dimensional notation.





Chapter 5

Summary and Results

The on-chip memories of the REDEFINE are implemented using single port block RAMs

with read and write on the same port. The address width of imems has be reduced from

17-bits from 10-bits. Similarly address width of LSU has be reduced from 17-bits to 10-

bits. Table 5.1 shows different on chip memories and the BRAM resource utilization, this

doesn’t include the BRAMs used in the LWMU of the CEs. All the BRAMs are inferred

using the coding techniques and the synthesis attributes. DSP48E1 is the only FPGA

resource that has been instantiated in the design. The instantiation done by importing

the DSP48E1 primitive macro to BSV. Each CE in the design utilizes 4 DSP48E1

Table 5.1: REDEFINE memories and their BRAM resource utilization

Memory Address Data Banks BRAMs
width (bits) width (bits) (18 Kb)

imem 10 66 51 5 × 4

LSU (dmem) 11 4 × 8 62 6 × 4

Instance LUT 10 19 1 2

prefetch LUT 10 11 1 1

Resource LUT 10 32 1 2

Template Tracker 10 23 1 2

Template Store 10 461 1 26

Scheduler LUT 10 8 1 1

Scheduler Memory 6 14 × 32 1 14
(GWMU)

slices, 3 are inferred for 32-bit multiplier and 1 is instantiated to perform 32-bit addition,

1depends on HyperOp configuration matrix row size
2depends on no. of Access Routers in the Fabric

29
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subtraction, comparison and logical operations. For the current Fabric size (6 × 6), 120

DSP slices are used.

Using the methods discussed in Chapter 2, 3 and 4 significant reduction in the resource

utilization has be obtained. Table 5.2 shows the comparison of number of slice LUTs used

for the implementation of individual modules of REDEFINE with out without optimiza-

tion.

Table 5.2: Comparison of LUT Utilization of individual modules of REDEFINE with
and without optimizations

LUT Before After
Utilization Optimization Optimization

ALU 12085 2975

Transporter 547 206

LWMU 1628 1194

CE 14432 3912

Router 3344 1135

Scheduler — 1946

HL 4425 1881

IHDF 25967 8082

RB 1423 818

5.1 Conclusion

High-level synthesis tools allows designers to write high-level behavioral description of the

design, still the designer should be the completely aware of hardware generated for the

given design. Synthesis tools are able to infer and map complex arithmetic and memory

descriptions onto the dedicated hardware blocks of particular FPGA device. However

given a particular RTL description, there is only so much the tools can do to maximize

performance. If high performance is needed in a design proper coding of the design should

be followed.
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